我国农业生产方式正在逐步发生转变,规模化的生产合作社以及现代农业科技园等不断出现,作为一种高端的自动化滴灌技术,实用性和观赏性兼具的智能滴灌得到了发展和应用。近年来,为克服国外智能滴灌产品垄断国内市场的不良现象,我国也开展了一定的智能滴灌系统研发工作。
太阳能智能滴灌控制系统,该装置中土壤湿度传感器和数据采集电路相连,数据采集电路、按键输入模块、电磁阀及其控制电路、增压栗及其控制电路、液晶显示模块、数据存储单元分别和单片机控制系统相连,光伏组件和蓄电池通过控制器和单片机控制系统相连。智能滴灌技术尚未考虑如下问题:(1)规模化的农田一般距居住区较远,电网输送困难且不经济,农业灌溉电力配套问题一直比较突出,需要合理利用其它能源作为滴灌的动力源;(2)作为一种能有效调控农作物生长环境的灌水技术,滴灌正体现集成化的发展趋势,利用滴灌系统灌水、施肥、加气、加热等已有一定研究,有待建立滴灌水肥气热智能灌施系统;(3)智能灌溉多采用中央控制器进行监测且多仅关注土壤水肥情况,农户往返查看费时费力且无法注意作物长势等情况;(4)低能耗、智能化一直是滴灌技术发展趋势,需要不断深入探讨合理减少灌溉能耗的问题。
温室水肥气热一体化智能灌溉系统,包括动力源、水源、施肥加气单元,滴灌单元、检测单元、阀门控制器和智能移动终端,该灌溉系统采用了清洁能源的动力源,减少了农田生产的电力投资,经济环保;通过阀门控制器采集检测单元以及传感器数据从而控制水源、施肥加气单元以及滴灌系统,实现了自动灌溉、施肥、加气、加热;智能移动终端通过无线网络连接无线通讯器从而获得土壤的水分、盐分、温度以及作物生长情况等信息并能对阀门控制器的整个自动化作业进行监控。
动力源包括太阳能光伏组件、风力发电机和蓄电池,所述太阳能光伏组件和风力发电机产生的电能通过充电控制电路输送至所述蓄电池中,所述蓄电池与所述阀门控制器连接并向其供电,所述阀门控制器通过通讯转换器连接无线通讯器,所述智能移动终端通过无线网络连接所述无线通讯器;水源包括水窖、太阳能热水器、水箱和水井,增压栗进水端口设置在所述水窖中,增压栗出水端口与所述太阳能热水器和水箱通过三通管相互连接,所述三通管的三个端口分别设置第一电磁阀、第二电磁阀和第三电磁阀以分别控制太阳能热水器、水箱和水窖中水流的方向;水栗进水端口设置在所述水井内,水栗出水端口连接所述水窖;所述水窖内设置水位传感器,所述水箱内设置温度传感器;水位传感器、温度传感器和土壤水肥热检测装置分别与所述阀门控制器电连接,所述太阳能热水器、增压栗、水栗以及第一电磁阀、第二电磁阀和第三电磁阀分别通过控制电路与所述阀门控制器电连接,所述图像采集装置通过图像采集电路与所述无线通讯器电连接。施肥加气单元设置在所述水箱上方,所述施肥加气单元包括称重传感器以及设置在所述称重传感器上的肥料桶和加气桶,所述肥料桶和加气桶分别通过第一出料管和第二出料管连接所述水箱,所述第一出料管和所述第二出料管上分别设置第四电磁阀和第五电磁阀;所述称重传感器与所述阀门控制器电连接,所述第四电磁阀和第五电磁阀分别通过控制电路与所述阀门控制器电连接。
水箱内设置搅拌装置,所述搅拌装置包括第一电机和搅拌叶,所述第一电机与搅拌叶通过芯轴连接;所述第一电机通过驱动电路与所述阀门控制器电连接。滴灌单元采用干支毛三级管道,包括干管、支管和毛管,所述水箱通过干管连接所述滴灌单元,所述水箱高于地面2〜3m,所述干管上依次设置第六电磁阀和过滤器,所述支管上设置第七电磁阀;所述第六电磁阀和第七电磁阀分别通过控制电路与所述阀门控制器电连接。毛管设置于土壤下5〜10cm。蓄电池上设置电量不足报警器,所述电量不足报警器与所述阀门控制器电连接。